TarPmiR: a new approach for microRNA target site prediction
نویسندگان
چکیده
MOTIVATION The identification of microRNA (miRNA) target sites is fundamentally important for studying gene regulation. There are dozens of computational methods available for miRNA target site prediction. Despite their existence, we still cannot reliably identify miRNA target sites, partially due to our limited understanding of the characteristics of miRNA target sites. The recently published CLASH (crosslinking ligation and sequencing of hybrids) data provide an unprecedented opportunity to study the characteristics of miRNA target sites and improve miRNA target site prediction methods. RESULTS Applying four different machine learning approaches to the CLASH data, we identified seven new features of miRNA target sites. Combining these new features with those commonly used by existing miRNA target prediction algorithms, we developed an approach called TarPmiR for miRNA target site prediction. Testing on two human and one mouse non-CLASH datasets, we showed that TarPmiR predicted more than 74.2% of true miRNA target sites in each dataset. Compared with three existing approaches, we demonstrated that TarPmiR is superior to these existing approaches in terms of better recall and better precision. AVAILABILITY AND IMPLEMENTATION The TarPmiR software is freely available at http://hulab.ucf.edu/research/projects/miRNA/TarPmiR/ CONTACTS: [email protected] or [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
منابع مشابه
Comparing MicroRNA Target Gene Predictions Related to Alzheimer's Disease Using Online Bioinformatics Tools
Introduction: The prediction of microRNAs related to target genes using bioinformatics tools saves time and costs of the experimental analyses. In the present study, the prediction of microRNA target genes relevant to Alzheimer’s Diseases (AD) were compared with the experimentally reported data using different bioinformatics tools. Method: A total of 41 microRNAs associated with 21 essential ge...
متن کاملComparing MicroRNA Target Gene Predictions Related to Alzheimer's Disease Using Online Bioinformatics Tools
Introduction: The prediction of microRNAs related to target genes using bioinformatics tools saves time and costs of the experimental analyses. In the present study, the prediction of microRNA target genes relevant to Alzheimer’s Diseases (AD) were compared with the experimentally reported data using different bioinformatics tools. Method: A total of 41 microRNAs associated with 21 essential ge...
متن کاملA Probabilistic Method for Prediction of microRNA-target Interactions
Elucidation of microRNA activity is a crucial step in understanding gene regulation. One key problem in this effort is how to model the pairwise interaction of microRNAs with their targets. As this interaction is strongly mediated by their sequences, it is desired to set up a probabilistic model to explain the binding between a microRNA sequence and the sequence of a putative target. To this en...
متن کاملPrediction of human miRNA target genes using computationally reconstructed ancestral mammalian sequences
MicroRNAs (miRNA) are short single-stranded RNA molecules derived from hairpin-forming precursors that play a crucial role as post-transcriptional regulators in eukaryotes and viruses. In the past years, many microRNA target genes (MTGs) have been identified experimentally. However, because of the high costs of experimental approaches, target genes databases remain incomplete. Although several ...
متن کاملBiologically Relevant MicroRNA Target Prediction by Integrating MicroRNA and mRNA Expression Data using Globaltest
.................................................................................................................................................. 3 Background .............................................................................................................................................. 4 Results .......................................................................................
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 32 شماره
صفحات -
تاریخ انتشار 2016